M1.(a) Sensible scales
Plotted points (including 0,0) must cover more than half the graph paper.
If axis wrong way round lose this mark but mark on consequentially.
Do not allow broken axis.

Plots points correctly
(b) Ring around the origin

Line through points is best fit and ignores anomaly (allow one plot ± 2 small square)

Lose this mark if student's line is doubled.
Kinked line loses this mark.
Lose this mark if the line does not pass through the origin + /

- 1 small square.

Lose this mark if the line deviates to anomaly.
(d) Draws suitable tangent

Must touch the curve at 30s and must not cross the curve.
Lose this mark if the tangent is unsuitable but mark on.

Chooses appropriate x and y values from their graph
Mark consequentially if axes plotted the wrong way around.
Page 2

Allow information clearly shown on graph.

Correctly calculates y / x
Difference in x values and y values must be at least 10 small squares in either direction.

Gives answer with correct units ($\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$) or correct variant Lose this mark if answer not to minimum of 2 significant figures and no units or incorrect units are given.
If student has used axis the wrong way round, the unit mark can be awarded for either the correct unit based on their graph or for the correct unit for rate.

MgO / the coating / the corrosion product has to be removed before Mg will react
OR Mg and MgO / the coating / the corrosion product react at different rates
OR Initially MgO / the coating / the corrosion product reacts not Mg (M2)
Ignore inert coating.
(c) Any two from:

Any order.
Slower with hot water or faster with steam
The hot water produces $\mathrm{Mg}(\mathrm{OH})_{2}$ / the hydroxide $\mathbf{O R}$ steam produces MgO / the oxide
(Slow) bubbling with hot water OR bright white light / flame / white solid with steam

2 max
(d) Magnesium sulfate is soluble and calcium sulfate is insoluble / slightly soluble / magnesium sulfate is more soluble / calcium sulfate is less soluble / correct trend in solubility (M1)

Any order.
M1 requires a comparison of the two solubilities.
Calcium sulfate coats the surface of the calcium (M2)
Coating prevents further contact with / reaction by the acid (M3)
'Calcium sulfate forms a protective coating' scores M2 only.

M3.(a) (i) Change in concentration (of a substance / reactant / product) in unit time / given time / per (specified) unit of time

This may be written mathematically OR may refer to the gradient of a graph of concentration / volume against time

OR

Amount of substance formed / used up in unit time / given time / per (specified) unit of time

Ignore additional information including reference to collisions
(ii) At W

M1 (QoL)
The rate / it is zero

The magnesium has all reacted / has been used up Ignore reference to the acid being used up

OR

No more collisions possible between acid and Mg
OR
Reaction is complete / it has stopped

OR

No more hydrogen / product is produced
(iii) M1

Twice / double as many particles / hydrogen ions (in a given volume) Penalise reference to (hydrochloric acid) molecules in M1 Penalise reference to " HCl particles" in M1

OR

Twice / double as much hydrochloric acid
M2
Twice / double as many effective / successful collisions (in a given time)
OR
Twice / double as many collisions with either sufficient energy to react $O R$ with $E \geq E_{\text {a }}$
$O R$
double the successful / effective collision frequency
(b) (i) The activation energy is the minimum energy for a reaction to go / start OR

Minimum energy for a successful/ effective collision
(ii) M1 Products lower than reactants on the profile Mark independently

M2 Activation energy $\left(E_{\mathrm{a}}\right)$ shown and labelled correctly from reactants to peak of curve Mark independently
(iii) M1 Barium meal / barium swallow / barium enema

Accept a correct reference to M1 written in the explanation in M2, unless contradictory

OR used in X-rays OR to block X-rays OR X-ray contrast medium OR CT scans
$\mathrm{M} 2 \quad \mathrm{BaSO}_{4} /$ barium sulfate is insoluble (and therefore not toxic) For M2 NOT barium ions

NOT barium
NOT barium meal and NOT "lt" Ignore radio-tracing

M4. (a) (i) M1 drawn curve starts at reactants and ends at products Tapered lines into the original curve gain credit for M1

M2 curve peak is below the one drawn in the question (and may show one/two humps)

Mark M1 and M2 independently
(ii) Exothermic (reaction)

Ignore " ΔH is negative"
(iii) $\quad \Sigma$ bond (enthalpy) reactants $<\Sigma$ bond (enthalpy) products

The sum for H_{2} and $\mathrm{I}_{2} /$ reactants is less than/lower than/smaller than the sum for $2 \mathrm{HI} /$ products
OR
The sum for $2 \mathrm{HI} /$ products is more than/larger than/bigger than the sum for H_{2} and I_{2} /reactants

Accept "lt OR the sum will be smaller or less"
(iv) $\mathbf{M 1} p$

M2 - $(q-p)$
OR
$p-q$
OR
$-q+p$
M2 demands that the sign for an exothermic reaction is part of the outcome mathematically. Ignore case
(b) (i) Increase/speed up/faster (rate of attainment of equilibrium)

OR
Increase/speed up/faster rate of both forward and reverse reaction

OR

Increase/speed up/faster rate of reaction
Credit "It took less time"
(ii) M1 Increase/speed up/faster (rate of attainment of equilibrium)

M2 More particles/molecules in a given volume/space OR the particles/molecules are closer together $O R$ an increase in concentration.

M3 More/higher chance of successful/effective/productive collisions (between particles)
OR more collisions/higher chance of collisions (of particles) with $\mathrm{E}>\mathrm{E}_{\text {Act }}$
If M1 is blank, mark on and credit M1 in the text
If M1 is given as "decrease"/"no effect"/"no change" then $C E=0$ for clip
In M1, if increase both the forward and reverse reaction, but no mention of rate, penalise M1 but mark on.
In M1, if increase either forward rate or reverse rate only, then penalise M1 but mark on.
Penalise M3 if an increase in the value of $E_{A c}$ /energy of particles is stated.
Max 1 for M2 and M3 if reference to "atoms"

M5. (a) Award in either order for curve
"Steeper" requires line to be on the left of the original line, starting from the origin

M1 curve is steeper than original and starts at the origin
M2 curve levels at the top line on the graph
(b) Award in either order for curve
"Shallower" requires line to be on the right of the original line, starting from the origin

M1 curve is shallower than original and starts at the origin
M2 curve levels at the first line on the graph
Page 8
(c) M1 curve would be steeper than original "Steeper" requires line to be on the left of the original line, starting from the origin

M2 curve levels at the same original volume of O_{2}
(d) M1 The (concentration / amount of) $\underline{H}_{2} \underline{\mathrm{O}}_{2}$ or reactant falls / decreases / used up Mark independently

OR
The number of $\underline{H}_{2} \underline{\mathrm{O}}_{2}$ or reactant molecules/ particles falls / decreases
M2
The rate of reaction / rate of decomposition / rate of formation of oxygen / frequency of collisions / (effective) collisions in a given time decreases / is slower
(e) (i) $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathbf{2} \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$

Ignore state symbols
Accept only this equation or its multiples
Extra species must be crossed through
(ii) hydrogen bromide / it does not appear in the overall equation OR
hydrogen bromide / it is not used up in the reaction / unchanged at the end of the reaction

OR

hydrogen bromide / it is regenerated / re-formed (in Step 2)

